SKKN Những sai lầm thường gặp của học sinh ở một số bài học trong toán 6 và biện pháp khắc phục
Trong quá trình học toán,học sinh thường mắc những sai lầm,cho dù những sai lầm đó thường xảy ra hoặc có thể xảy ra đều là điều đáng tiếc cho bản thân học sinh và người dạy.Nếu trong quá trình dạy học toán,ta đưa ra những tình huống sai lầm mà học sinh dễ bị mắc phải, chỉ rõ và phân tích cho các em thấy được chỗ sai lầm,điều đó sẽ giúp cho các em không những khắc phục được sai lầm mà còn hiểu kĩ hơn bài mình đang học.
Đề tài sáng kiến kinh nghiệm.
NHỮNG SAI LẦM THƯỜNG GẶP CỦA HỌC SINH
Ở MỘT SỐ BÀI HỌC TRONG TOÁN 6 VÀ
BIỆN PHÁP KHẮC PHỤC
A/ĐẶT VẤN ĐỀ:
I/LÝ DO CHỌN ĐỀ TÀI:
Trong quá trình học toán,học sinh thường mắc những sai lầm,cho dù những
sai lầm đó thường xảy ra hoặc có thể xảy ra đều là điều đáng tiếc cho bản thân
học sinh và người dạy.Nếu trong quá trình dạy học toán,ta đưa ra những tình
huống sai lầm mà học sinh dễ bị mắc phải, chỉ rõ và phân tích cho các em thấy
được chỗ sai lầm,điều đó sẽ giúp cho các em không những khắc phục được sai
lầm mà còn hiểu kĩ hơn bài mình đang học.Chính vì thế trong khi trực tiếp giảng
dạy bộ môn toán 6,kết hợp với việc tham khảo ý kiến của đồng bạn và đồng
nghiệp.Tôi đã đúc kết,tổng hợp tất cả những sai lầm thường gặp của học sinh
trong quá trình dạy học,để viết thành đề tài sáng kiến kinh nghiệm này.
II/GIỚI HẠN ĐỀ TÀI:
Đề tài này được áp dụng trong khi dạy chương trình toán 6 THCS.
III/THỰC TRẠNG VẤN ĐỀ:
-Trong quá trình học toán,học sinh hiểu phần lý thuyết có khi chưa chắc
chắn hoặc còn mơ hồ về các định nghĩa,các khái niệm,các công thức…nên
thường dẫn đến sai lầm khi làm bài tập.
-Có những dạng bài tập,nếu học sinh không chú tâm để ý hay chủ quan xem
nhẹ hoặc làm theo cảm nhận tương tự là có thể vấp phải sai lầm.
-Đa số học sinh cảm thấy khó học phần định nghĩa,khái niệm mà đây lại là
vấn đề quan trọng yêu cầu học sinh phải nắm và hiểu được trước khi làm bài
tập,còn học sinh có tư tưởng chờ làm bài tập rồi mới hiểu kĩ hơn về các định
nghĩa,khái niệm đó,nên dễ dẫn đến sai lầm.
-Bản thân học sinh lại rất lười nhát trong việc đọc-hiểu các định nghĩa,khái
niệm,nên trong quá trình giải bài tập gặp rất nhiều khó khăn và hay dễ mắc phải
những lỗi sai .
B/GIẢI QUYẾT VẤN ĐỀ:
I/LẬP KẾ HOẠCH:
-Đối với mỗi bài học,tiết học nếu có những sai lầm thường xảy ra thì giáo
viên cần đưa vào ngay tiết dạy để chỉ rõ cho học sinh biết trước những lỗi sai đó.
-Mỗi sai lầm đưa ra giáo viên còn hướng dẫn học sinh tìm hiểu nguyên nhân
và có biện pháp khắc phục giải quyết những sai lầm để học sinh rút kinh nghiệm
và hiểu thêm bài học.
II/NỘI DUNG ĐỀ TÀI:
Nội dung đề tài thể hiện ở :
-Mỗi bài học nếu có sai lầm mà học sinh thường mắc phải.
-Nguyên nhân và biện pháp khắc phục.
1
Người viết: Bùi Đức Long - Gv Trường THCS Tân Mộc
Đề tài sáng kiến kinh nghiệm.
Dưới đây là những sai lầm thường gặp của học sinh ở một số bài học trong
toán 6.
*Phần số học:
1/ Trong bài: “Số phần tử của một tập hợp,tập hợp con”.
-Học sinh thường sai lầm khi làm dạng bài tập:
Điền kí hiệu ,, vào chỗ trống: 2 …. N ; {2} …. N ; 1,5 …. N
Nhiều HS có thể điền sai là: {2}
-Nguyên nhân sai lầm:
N
Do học sinh chưa hiểu rõ quan hệ giữa phần tử với tập hợp và tập hợp với
tập hợp,chưa xác định được đâu là phần tử,đâu là tập hợp.Để dùng kí hiệu cho
đúng của dạng bài tập này.
-Biện pháp khắc phục:
Ở đây giáo viên chỉ cần chỉ cho học sinh quan hệ giữa phần tử với tập hợp
chỉ dùng kí hiệu ,;còn quan hệ giữa tập hợp với tập hợp là dùng kí hiệu và
chỉ cho học sinh thấy các phần tử nằm trong hai dấu ngoặc nhọn là một tập hợp.
2/ Trong bài: “Phép cộng và phép nhân”
-Sai lầm có thể xảy ra khi học sinh áp dụng tính chất phân phối của phép nhân
đối với phép cộng:
Khi HS làm dạng bài tập 5.(2+3)
HS thường thực hiện 5.(2+3) = 5 .2 =10
= 5 . 3 = 15
= 10 + 15 = 25
-Nguyên nhân và biện pháp khắc phục:
Do học sinh chưa nắm vững tính chất,không thể hiểu được 5.(2+3) không thể
bằng (5.2) mà học sinh chỉ lấy số 5 nhân với từng số hạng của tổng,rồi công các
kết quả lại.Ở đây giáo viên chỉ cần đưa tình huống như ví dụ cho học sinh so
sánh 5.(2+3) với tích 5.2.Rối từ đó xác định 5.(2+3) không thể bằng với (5.2) và
khẳng định cách làm trên là sai và cách làm đúng sẽ là:
5.(2+3) = 5.2+5.3 = 10 + 15 = 25
3/ Trong bài: “Phép trừ và phép chia”
-Học sinh thường mắc sai lầm khi giải bài tập tìm x sau:
5x – 36 : 18 = 13
5x – 36 = 13 . 18
5x – 36 = 234
5x = 234 + 36
x = 270 : 5
x = 54
-Nguyên nhân sai lầm:
Do học sinh xác định số 18 trong biểu thức là số chia và xem (5x -36) là số
bị chia nên dẫn đến sai lầm.
2
Người viết: Bùi Đức Long - Gv Trường THCS Tân Mộc
Đề tài sáng kiến kinh nghiệm.
-Biện pháp khắc phục:
Ở đây giáo viên nên đưa ra hai đề bài:
5x -36 : 18 = 13 và (5x-36):18 = 13
Yêu cầu học sinh nêu sự khác nhau của hai đề bài .
GV đưa ra cách giải đúng cho các bài tập trên để HS so sánh.
5x – 36 : 18 = 13
5x – 2 = 13
(5x-36):18 = 13
5x – 36 = 13 . 18
5x – 36 = 234
5x = 234 + 36
x = 270 : 5
5x = 13 + 2
x = 15 : 5
x = 3
x = 54
Từ đó đi đến nhấn mạnh sự khác nhau giữa hai đề bài,giữa hai kết quả
và kết hợp chỉ ra cho học sinh thấy sai lầm trên để học sinh rút kinh nghiệm.
4/ Trong bài: :”Luỹ thừa với số mũ tự nhiên,nhân hai luỹ thừa cùng cơ số”
-HS thường sai lầm khi tính luỹ thừa:
Nhiều HS có thể tính 23 = 2.3 = 6
-Nguyên nhân :
Do học sinh chưa hiểu kĩ định nghĩa về luỹ thừa và làm theo cảm nhận nên
đa số HS dễ mắc sai lầm này.
-Biện pháp khắc phục: Giáo viên đưa ra hai cách làm sau:
Cách 1: 23 = 2.2.2 = 8
Cách 2: 23 = 2 . 3 = 6
Yêu cầu HS xác định cách làm đúng,cách làm sai ?Tại sao?
Từ đó GV nhắc HS không nên tính 23 bằng cách lấy cơ số nhân với số mũ.
5/ Trong bài: “Thứ tự thực hiện các phép tính”
-Sai lầm HS thường mắc phải là:
Trường hợp 1: HS tính: 2 . 52 = 102
Trường hợp 2: HS tính: 62 : 4 . 3 = 62 : 12
-Nguyên nhân :
Do HS chưa nắm kĩ quy ước về thứ tự thực hiện các phép tính.Nên cứ thấy
thuận lợi là thực hiện.
-Biện pháp khắc phục:
Ở đây giáo viên nên đưa ra hai cách làm sau cho mỗi trường hợp:
Trường hợp 1: Cách 1:
Cách 2:
Trường hợp 2: Cách 1:
Cách 2:
2 . 52 = 102 = 100
2 . 52 = 2 . 25 = 50
62 : 4 . 3 = 62 : 12 = 36 : 12 = 3
62 : 4 . 3 = 36 : 4 . 3 = 9 . 3 = 27
Yêu cầu HS xác định:
Cách nào làm đúng,cách nào làm sai ? Vì sao đúng,vì sao sai ?(cho
mỗi trường hợp)
Rồi từ đó giáo viên chỉ cho HS thấy chỗ sai là không thực hiện đúng
theo thứ tự thực hiện các phép tính.Để HS rút kinh nghiệm.
3
Người viết: Bùi Đức Long - Gv Trường THCS Tân Mộc
Đề tài sáng kiến kinh nghiệm.
6/ Trong bài: “Số nguyên tố,hợp số,bảng số nguyên tố”
-Dạng bài tập HS dễ sai lầm là:
Xét xem hiệu 13.7.9.11-2.3.4.7 là số nguyên tố hay hợp số ?
HS sẽ xác định hiệu chia hết cho 7 và đi đến kết luận hiệu là hợp số.
-Nguyên nhân sai lầm:
HS chứng minh hiệu chia hết cho 7 nhưng không biết rằng hiệu đó có bằng
7 hay không nên dẫn đến sai lầm là thiếu một điều kiện là hiệu phải lớn hơn 7.
-Biện pháp khắc phục:
Để khắc phục được trường hợp này giáo viên đưa ra một bài tập sau:
Xét xem hiệu 2 . 6 . 5 – 29 . 2 là số nguyên tố hay hợp số ?
Khi HS xác định được hiệu chia hết cho 2,giáo viên yêu cầu HS thử tính
xem hiệu trên bằng bao nhiêu ?
Rồi từ đó đi đến kết luận hiệu chia hết cho 2 nhưng hiệu đó bằng 2 nên
hiệu là số nguyên tố.
Từ đó giáo viên cho HS rút kinh nghiệm sai lầm như bài tập trên.
7/ Trong bài: “Phân tích một số ra thừa số nguyên tố”
-HS dễ mắc sai lầm khi phân tích một số ra thừa số nguyên tố .
Nhiều HS thực hiện khi phân tích số 120 ra thừa số nguyên tố:
120 = 2 . 3 . 4 . 5
-Nguyên nhân sai lầm:
Do HS chưa hiểu được định nghĩa thế nào là phân tích một số ra thừa số
nguyên tố,nên không thể xác định tích (2 .3 .4.5) trong đó có một thừa số là hợp
số.
-Biện pháp khắc phục:
Ở đây giáo viên chỉ cần đưa ra hai cách làm khi phân tích số 120 ra TSNT
Cách 1: 120 = 2.3.4.5
Cách 2: 120 = 2.2.2.3.5.
Yêu cầu HS xác định :
Xét các tích trên xem có còn thừa số nào là hợp số không ?
Cách nào làm đúng?Vì sao đúng?
Cách nào làm sai ?Vì sao sai ?
Từ đó GV chỉ ra nguyên nhân của cách làm sai.Để HS rút kinh nghiệm.
8/ Trong bài: “Quy tắc dấu ngoặc”
Quy tắc dấu ngoặc không khó đối với HS nhưng khi làm bài HS rất hay bị
nhầm lẫn.Đặc biệt trong trường hợp khi có dấu trừ đứng trước dấu ngoặc.
-HS thường mắc sai lầm khi làm dạng bài tập:
Bỏ dấu ngoặc rồi tính : (27+65)-(84 +27 + 65)
HS sẽ thực hiện
(27+65)-( 84 + 27 + 65)
= 27 + 65 + 84 - 27 - 65
= (27 – 27) + (65 – 65) + 84
= 84
4
Người viết: Bùi Đức Long - Gv Trường THCS Tân Mộc
Đề tài sáng kiến kinh nghiệm.
-Nguyên nhân sai lầm:
HS không xác định được dấu của phép tính và dấu của các số hạng,rất
lúng túng khi đổi dấu số hạng đầu tiên nằm trong dấu ngoặc (trong trường hợp
dấu trừ đằng trước dấu ngoặc)
-Biện pháp khắc phục:
Giáo viên chỉ cần coi trọng việc rèn luyện cho HS tính cẩn thận khi thực
hiện “bỏ dấu ngoặc” hoặc “đặt dấu ngoặc” khi đằng trước có dấu “-“
Chỉ cho HS biết được đâu là dấu của phép tính và đâu là dấu của số hạng
hoặc có thể đưa ra tình huống tổng quát sau:
Thực hiện bỏ dấu ngoặc: -(a - b + c - d)
Cách1:
-(a - b + c - d)= -a +b - c + d
Cách2: -(a - b + c - d) = a +b - c + d
Yêu cầu HS xác định dấu của các số hạng trong ngoặc
Hỏi cách làm nào đúng,cách làm nào sai ? vì sao ?
Từ đó giáo viên cho HS rút kinh nghiệm khi thực hiện quy tắc dấu ngoặc.
9/ Trong bài: “Bội và ước của một số nguyên”
-HS thường sai lầm khi tìm tất cả các ước của một số nguyên như:
Khi tìm tất cả các ước của 6.
Nhiều HS thực hiện: ước của 6 là 1;2;3;6
-Nguyên nhân sai lầm:
Do HS có thói quen tìm các ước của một số tự nhiên,nên khi tìm các ước
của một số nguyên,HS thường quên đi các ước là các số âm.
-Biện pháp khắc phục:
Trong bài học này giáo viên đưa ra hai cách làm tìm tất cả các ước của 6.
Cách 1: ước của 6 là 1;2;3;6
Cách 2: ước của 6 là 1;-1;2;-2;3;-3;6;-6
Yêu cầu HS xác định kĩ yêu cầu đề bài.
Trong các cách làm trên cách nào làm đúng,cách nào làm sai ?Tại sao
Từ đó rút ra kinh nghiệm cho loại bài tập này.
10/ Trong bài: “Rút gọn phân số”
-HS dễ mắc sai lầm sau:
4
4 : 2
9 : 3
2
3
Khi rút gọn phân số
9
-Nguyên nhân sai lầm:
Do HS chưa nắm vững tính chất cơ bản của phân số và chỉ thấy rất thuận
tiện khi đem 4:2 và 9:3 nên dẫn đến sai lầm.
-Biện pháp khắc phục:
4
9
4 : 2
9 : 3
2
3
Giáo viên đưa ra tình huống
Yêu cầu HS xác định cách làm này đúng hay sai,nếu sai vì sao sai và sửa
lại cho đúng?
5
Người viết: Bùi Đức Long - Gv Trường THCS Tân Mộc
Đề tài sáng kiến kinh nghiệm.
Từ đó giáo viên cho HS rút kinh nghiệm không nên chia cả tử và mẫu của
phân số như cách làm trên.
Trong bài học này HS còn dễ mắc sai lầm khi rút gọn một biểu thức
8.5 8.2 8.5 8.2 5 8
3
16
8.2
1
-Nguyên nhân:
HS chưa hiểu được biểu thức trên có thể coi là một phân số.Nên chỉ cần
nhìn thấy các số giống nhau ở tử và mẫu là rút gọn,cho dù ở tử hay mẫu đang ở
dạng tổng.
-Biện pháp khắc phục:
8.5 8.2
Giáo viên chỉ cần đưa ra hai cách làm sau khi rút gọn biểu thức :
16
8.5 8.2 8.5 8.2 5 8
Cách 1:
Cách 2:
3
16
8.2
1
8.5 8.2 8.(5 2)
3
2
16
8.2
GV yêu cầu HS xác định:
Biểu thức trên có phải là phân số không?
Cách nào làm đúng,cách nào làm sai?Vì sao?
Từ đó GV nhấn mạnh:Rút gọn như cách 1 là sai vì các biểu thức trên có
thể coi là một phân số,phải biến đổi tử và mẫu thành tích mới rút gọn được.Bài
này sai vì đã rút gọn ở dạng tổng.Cách 2 mới là cách làm đúng và lưu ý HS rút
kinh nghiệm.
11/ Trong bài: “So sánh phân số”
-HS dễ mắc sai lầm khi :
3
2
5
So sánh 2 phân số:
va
7
Nhiều HS sẽ thực hiện với cách suy luận sau:
3
2
Vì 3 > 2 và 7 > 5 nên
7
5
-Nguyên nhân sai lầm:
Do HS chưa nắm vững quy tắc so sánh hai phân số,nên dễ nhận thấy sự
so sánh giữa tử với tử và mẫu với mẫu của hai phân số,nên cách lập luận này
không phải là đúng.
-Biện pháp khắc phục:
Giáo viên đưa ra hai cách làm của hai HS như sau:
3
2
khi so sánh hai phân số va
7
5
3
7
2
5
3
7
15
35
2
5
14
15 14
3
7
2
5
HS1:
vì
va
mà
nên
35
35 35
6
Người viết: Bùi Đức Long - Gv Trường THCS Tân Mộc
Đề tài sáng kiến kinh nghiệm.
3
7
2
5
HS2:
vì 3 > 2 và 7 > 5
Theo em thì cách suy luận HS nào đúng ? vì sao ?
Em có thể lấy một ví dụ khác để chứng minh cách suy luận của HS đó là
sai không?
3
1
3
7
1
2
3
7
1
2
(ví dụ:so sánh hai phân số va Vì 3 > 1 và 7 > 2 nên
là sai vì
)
7
2
Từ đó giáo viên lưu ý HS khi so sánh các phân số không được suy luận
theo kiểu HS2.
12/ Trong bài: “Phép cộng phân số”
-Sai lầm của HS khi:
- Cộng hai phân số không cùng mẫu:
HS sẽ thực hiện
2
3
2 3
5 2
5
5
2
7
-Ngyuên nhân sai lầm:
Do HS không nắm vững được quy tắc cộng hai phân số cùng mẫu và
không cùng mẫu và cảm thấy dễ dàng khi lấy tử cộng tử và mẫu cộng mẫu.
-Biện pháp khắc phục:
2
3
Ở trường hợp này giáo viên đưa ra hai cách cộng hai phân số va như
5
2
sau:
2
3
2 3
5 2
5
7
Cách 1:
Cách 2:
5
2
2
3
4
15 19
5
2
10 10 10
Hỏi cách nào làm đúng?Cách nào làm sai?Tại sao
Từ đó giáo viên cho HS nhắc lại quy tắc cộng hai phân số không cùng mẫu.
13/ Trong bài: “Tính chất cơ bản của phép nhân phân số”
-HS dễ mắc sai lầm khi thực hiện dạng toán sau:
1
1
2
5
1
1 7
3 3
1
7
9 14 23
2
3
3
3
2
2
9
18
18
-Nguyên nhân:
HS chưa nắm vững được tính chất phân phối của phép nhân đối với phép
cộng,nên đã bỏ dấu ngoặc thứ nhất dẫn đến lời giải sai.
-Biện pháp khắc phục:
Giáo viên đưa ra tình huống
1
1
2
5
1
1 7
3 3
1
7
9
9 14 23
2
3
3
3
2
2
18
18
Yêu cầu HS tìm chỗ sai trong lời giải và sửa lại cho đúng.
7
Người viết: Bùi Đức Long - Gv Trường THCS Tân Mộc
Đề tài sáng kiến kinh nghiệm.
Từ đó rút kinh nghiệm không nên bỏ dấu ngoặc một cách tuỳ tiện trong
trường hợp này.
14/ Trong bài: “Phép chia phân số”
-HS thường mắc sai lầm ở chỗ khi làm bài tập sau:
1
1
4
1 1 1 4
:
2 3 2 3
:
:
2
3
3
-Nguyên nhân:
HS nhầm tưởng là phép chia cũng có tính chất phân phối.
-Biện pháp khắc phục:
Giáo viên đưa ra tình huống:
1
1
4
1 1 1 4 1 3 1 3
:
2 3 2 3 2 1 2 4
3
2
3
8
12 3 15
:
:
2
3
3
8
8
Hỏi HS cách làm trên đúng hay sai?Nếu sai,tìm chỗ sai và sửa lại cho đúng?
Sau đó giáo viên lưu ý HS không được làm như cách trên mà cách làm đúng
1
1
4
1 5 1 3
2 3 2 5 10
3
sẽ là:
:
:
2
3
3
15/ Trong bài: “Hỗn số-Số thập phân-Phần trăm”
-HS dễ sai lầm khi viết:
1
1
*
3 3
4
4
-Nguyên nhân sai lầm:
1
1
4
Do HS có thói quen khi làm 3 3
và chưa hiểu được hết bản chất
4
của một hỗn số âm.
-Biện pháp khắc phục:
Giáo viên đưa ra hai cách làm sau:
1
1
1
1
5
Cách 1: 2 2
Cách 2: 2 2
5
5
5
Hỏi cách nào làm đúng?cách nào sai?Vì sao?
Từ đó GV nên nhấn mạnh lại cách làm 2 cho HS chú ý để rút kinh nghiệm.
*Phần hình học:
1/ Trong bài: “Đường thẳng đi qua hai điểm”
-Từ hai đường thẳng song song không có điểm chung(Hình học phẳng),HS
dễ mắc sai lầm khi xác định hai đường thẳng sau là song song.
a
b
8
Người viết: Bùi Đức Long - Gv Trường THCS Tân Mộc
Đề tài sáng kiến kinh nghiệm.
-Nguyên nhân:
HS không nhìn thấy điểm chung giữa hai đường thẳng trên hình vẽ
-Biện pháp khắc phục:
Giáo viên đưa hình vẽ trên lên bảng và nói đường thẳng không bị giới
hạn về hai phía,vậy ở hình vẽ trên:
Hai đường thẳng a và b có cắt nhau không?Tại sao?
Từ đó giáo viên có thể lưu ý HS đường thẳng không bị giới hạn về hai
phía,nên ở trường hợp trên đường thẳng a sẽ cắt đường thẳng b.
2/ Trong bài: “Đoạn thẳng”
-HS dễ sai lầm ở dạng bài tập sau:
Cho hình vẽ:
B
A
M
d
C
Hãy xác định đường thẳng d cắt đoạn thẳng nào?
HS dễ dàng trả lời đường thẳng d cắt đoạn thẳng BC tại M
-Nguyên nhân sai lầm:
Trong khi học bài này,ta thường chỉ cho HS thấy đường thẳng cắt đoạn
thẳng trên hình vẽ rất đơn giản,là chỉ xét 1 đoạn thẳng và 1 đường thẳng.Nên khi
ở dạng hình vẽ trên HS rất khó nhận ra đường thẳng cắt các đoạn thẳng tại các
mút của đoạn thẳng,vì thế dễ dẫn đến sai lầm.
-Biện pháp khắc phục:
Trong bài học này giáo viên đưa ra hình vẽ trên.
Yêu cầu HS xác định đường thẳng d cắt những đoạn thẳng nào?giao điểm tại
đâu?
Từ đó lưu ý HS ở chỗ đường thẳng có thể cắt đoạn thẳng tại hai mút của
đoạn thẳng,cụ thể như hình vẽ trên để HS rút kinh nghiệm.
3/ Trong bài: “Vẽ góc cho biết số đo”
-HS dễ mắc sai lầm khi làm dạng bài tập sau:
Hãy vẽ trên cùng một nửa mặt phẳng có bờ là đường thẳng chứa tia OA :
Hai góc AOB = 400 và AOC = 1300
HS sẽ dễ vẽ sai trong trường hợp này:
9
Người viết: Bùi Đức Long - Gv Trường THCS Tân Mộc
Đề tài sáng kiến kinh nghiệm.
Nhiều HS có thể vẽ:
C
1300
400
A
O
B
-Nguyên nhân sai lầm:
HS chưa xác định được nửa mặt phẳng bờ chứa tia OA và đã vẽ hai góc trên
hai nửa mặt phẳng.
-Biện pháp khắc phục:
Cũng như đề bài trên giáo viên đưa ra hai cách vẽ:
C
1300
Cách 1:
Cách 2:
O 400
A
B
C
B
1300
O
A
Yêu cầu HS xác định nửa mặt phẳng có bờ chứa tia OA?
Hỏi cách vẽ nào đúng?cách vẽ nào sai?Vì sao?
Từ đó giáo viên lưu ý học sinh ở cách vẽ 1,hai góc cần vẽ nằm ở hai nửa mặt
phẳng có bờ là OA nên không đúng theo yêu cầu đề bài là vẽ hai góc trên cùng
nửa mặt phẳng.
III/KẾT QUẢ THỰC HIỆN ĐỀ TÀI:
Khi áp dụng đề tài này trong giảng dạy,tôi nhận thấy HS đã có khả năng hạn
chế hoặc không để xảy ra những sai lầm đáng tiếc trong khi làm bài tập ở nhà,ở
lớp hoặc bài kiểm tra.Tuy nhiên vẫn còn một số trường hợp HS vẫn còn mắc phải
sai lầm bởi tính chủ quan,xem nhẹ hay làm bài theo cảm nhận thói quen.Ví dụ
như khi tính luỹ thừa: 23 = 2.3 = 6.Với những nguyên nhân và biện pháp khắc
phục sai lầm đã được mổ xẻ phân tích làm cho HS thêm hiểu bài học,nắm vững
phần lý thuyết để trong quá trình làm bài tập được dễ dàng hơn và khỏi bị mắc
sai lầm.
IV/ BÀI HỌC KINH NGHIỆM :
10
Người viết: Bùi Đức Long - Gv Trường THCS Tân Mộc
Đề tài sáng kiến kinh nghiệm.
Qua việc áp dụng đề tài này trong giảng dạy,tôi rút ra được một số bài học
kinh nghiệm sau đây:
*Dạy cho HS biết sự dễ mắc sai lầm,làm cho HS dễ nhớ và hiểu bài hơn.
*Phương pháp chỉ ra cái sai để tìm ra cái đúng rất dễ dạy và dễ học.
*Phải tích luỹ những sai lầm của HS trong quá trình giảng dạy,để từ đó tìm
ra biện pháp khắc phục sao cho hữu hiệu.
*Thực tế đề tài SKKN này có thể được áp dụng vào ngay trong tiết dạy,tại
một thời điểm phù hợp ở từng bài học,hoặc GV có thể cho HS tham khảo trước ở
nhà để HS nắm bắt nội dung bài học một cách dễ dàng hơn.
*Tuy nhiên những sai lầm cùng với những nguyên nhân và biện pháp khắc
phục tôi đưa ra không phải là hoàn toàn hữu hiệu.Rất mong được sự đóng góp ý
kiến của quý vị và các bạn.
Tân Mộc , ngày 25 tháng 5 năm 2012
Người viết
Bùi Đức Long
11
Người viết: Bùi Đức Long - Gv Trường THCS Tân Mộc
Tải về để xem bản đầy đủ
Bạn đang xem 11 trang mẫu của tài liệu "SKKN Những sai lầm thường gặp của học sinh ở một số bài học trong toán 6 và biện pháp khắc phục", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- skkn_nhung_sai_lam_thuong_gap_cua_hoc_sinh_o_mot_so_bai_hoc.doc