SKKN Những sai lầm thường gặp của học sinh khi gặp môn Toán 6 và biện pháp khắc phục
Trong suốt quá trình học toán, học sinh thường mắc những sai lầm, cho dù là nhiều hay ít cũng là điều đáng tiếc cho bản thân học sinh và người dạy. Nếu trong quá trình dạy học toán, ta đưa ra những tình huống sai lầm mà học sinh dễ bị mắc phải, chỉ rõ và phân tích cho các em thấy được chỗ sai lầm, điều đó sẽ giúp cho các em không những khắc phục được sai lầm mà còn hiểu kĩ hơn bài mình đang học.
SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI
MÃ SKKN
SÁNG KIẾN KINH NGHIỆM
Những sai lầm thường gặp của học
sinh khi gặp môn toán 6 và biện pháp
khắc phục
Lĩnh vực: Toán
Cấp học: Trung học cơ sở
Năm học 2015-2016
Đề tài sáng kiến kinh nghiệm
Năm học 2015-2016
MỤC LỤC
STT
Nội dung
Trang
PHẦN THỨ NHẤT: ĐẶT VẤN ĐỀ
1. Lí do chọn sáng kiến kinh nghiệm
1
2
3
3
2. Thời gian thực hiện và triển khai sáng kiến kinh
nghiệm.
PHẦN THỨ HAI: GIẢI QUYẾT VẤN ĐỀ
1. Cơ sở lý luận của vấn đề
3
4
5
6
4
4
2. Thực trạng của vấn đề
3. Các biện pháp đã tiến hành để giải quyết vấn đề
4. Hiệu quả của sáng kiến kinh nghiệm
PHẦN THỨ BA: KẾT LUẬN VÀ KIẾN NGHỊ
TÀI LIỆU THAM KHẢO
5
17
18
20
20
PHỤ LỤC
2
Đề tài sáng kiến kinh nghiệm
Năm học 2015-2016
PHẦN THỨ NHẤT: ĐẶT VẤN ĐỀ
1. LÝ DO CHỌN ĐỀ TÀI:
Trong suốt quá trình học toán, học sinh thường mắc những sai lầm, cho dù
là nhiều hay ít cũng là điều đáng tiếc cho bản thân học sinh và người dạy. Nếu
trong quá trình dạy học toán, ta đưa ra những tình huống sai lầm mà học sinh dễ
bị mắc phải, chỉ rõ và phân tích cho các em thấy được chỗ sai lầm, điều đó sẽ
giúp cho các em không những khắc phục được sai lầm mà còn hiểu kĩ hơn bài
mình đang học. Chính vì thế trong khi trực tiếp giảng dạy bộ môn toán 6, kết
hợp với việc tham khảo ý kiến của đồng bạn và đồng nghiệp. Tôi đã đúc kết,
tổng hợp tất cả những sai lầm thường gặp của học sinh trong quá trình dạy học,
để viết thành đề tài sáng kiến kinh nghiệm ‘‘Sai lầm thường gặp khi học môn
toán 6 của học sinh và những giải pháp’’ này.
2. THỜI GIAN THỰC HIỆN VÀ TRIỂN KHAI SÁNG KIẾN KINH
NGHIỆM
- Từ 15 / 08 /2015 đến 29 / 08/2015 xây dựng kế hoạch, thực hiện khảo
sát chất lượng bộ môn, từ đó rút ra nguyên nhân, xây dựng cơ sở lý luận, đề xuất
biện pháp, trao đổi và thảo luận.
- Từ 30/ 8/ 2015 đến 18/ 02/ 2016 triển khai lý thuyết và thực nghiệm ở tổ
trên lớp 6 mà bản thân tôi đang giảng dạy.
- Từ 20/02/ 2016 đến 28/02/ 2016 viết đề cương và đưa ra thảo luận tại tổ
và tại trường từ đó bổ sung, chỉnh sửa cho hoàn chỉnh sáng kiến.
- Từ 01/03/ 2012 đến 01/04/ 2012 duyệt đề cương và viết hoàn chỉnh sáng
kiến.
3
Đề tài sáng kiến kinh nghiệm
Năm học 2015-2016
PHẦN THỨ HAI: GIẢI QUYẾT VẤN ĐỀ
1. CƠ SỞ LÝ LUẬN CỦA VẤN ĐỀ.
Ngày nay học sinh luôn được tiếp cận với nhiều kiến thức khoa học tiên
tiến, với nhiều môn học mới lại đầy hấp dẫn nhằm hoàn thiện và bắt kịp công
cuộc đổi mới, phát triển toàn diện của đất nước. Trong các môn học ở trường phổ
thông, toán học được xem là môn học cơ bản, là nền tảng để các em phát huy
năng lực của bản thân trong việc tiếp thu và học tập các môn khoa học khác. Tuy
nhiên để học sinh học tập tốt môn toán thì giáo viên phải cung cấp đầy đủ lượng
kiến thức cần thiết, cần đổi mới các phương pháp dạy học, làm cho các em trở
nên yêu thích toán học hơn, vì có yêu thích mới dành nhiều thời gian để học toán.
Từ đó các em tự ý thức trong học tập và phân bổ thời gian hợp lý đảm bảo yêu
cầu học tập của thời đại mới.
Lớp 6 là lớp đầu cấp 2 do đó đa số các em học sinh còn bỡ ngỡ với phương
pháp dạy học ở cấp trung học cơ sở, do đó với mỗi tiết học toán để các em học
sinh tiếp thu tốt kiến thức đã học và vận dụng tốt vào làm bài tập là cả một vấn đề
của người giáo viên. Trong một tiết học toán có rất nhiều học sinh chưa hiểu rõ
vấn đề cơ bản của lý thuyết vì vậy còn mắc phải những sai lầm rất cơ bản khi làm
bài tập. Chính vì lẽ đó đối với mỗi bài học, tiết học nếu có những sai lầm thường
xảy ra thì giáo viên cần đưa vào ngay tiết dạy để chỉ rõ cho học sinh biết trước
những lỗi sai đó. Mỗi sai lầm đưa ra giáo viên còn hướng dẫn học sinh tìm hiểu
nguyên nhân và có biện pháp khắc phục giải quyết những sai lầm để học sinh rút
kinh nghiệm và hiểu thêm bài học.
2. THỰC TRẠNG CỦA VẤN ĐỀ.
- Trong quá trình học toán, học sinh hiểu phần lý thuyết có khi chưa chắc
chắn hoặc còn mơ hồ về các định nghĩa, các khái niệm, các công thức…nên
thường dẫn đến sai lầm khi làm bài tập.
- Có những dạng bài tập, nếu học sinh không chú tâm để ý hay chủ quan
xem nhẹ hoặc làm theo cảm nhận tương tự là có thể vấp phải sai lầm.
- Đa số học sinh cảm thấy khó học phần định nghĩa, khái niệm mà đây lại là
vấn đề quan trọng yêu cầu học sinh phải nắm và hiểu được trước khi làm bài tập,
còn học sinh có tư tưởng chờ làm bài tập rồi mới hiểu kĩ hơn về các định nghĩa,
khái niệm đó, nên dễ dẫn đến sai lầm.
4
Đề tài sáng kiến kinh nghiệm
Năm học 2015-2016
- Bản thân học sinh lại rất lười nhát trong việc đọc - hiểu các định nghĩa,
khái niệm, nên trong quá trình giải bài tập gặp rất nhiều khó khăn và hay dễ mắc
phải những lỗi sai .
3. CÁC BIỆN PHÁP ĐÃ TIẾN HÀNH ĐỂ GIẢI QUYẾT VẤN ĐỀ.
Nội dung đề tài thể hiện ở :
- Mỗi bài học nếu có sai lầm mà học sinh thường mắc phải.
- Nguyên nhân và biện pháp khắc phục.
Dưới đây là những sai lầm thường gặp của học sinh ở một số bài học trong
toán 6.
* Phần số học:
1/ Trong bài: “Số phần tử của một tập hợp,tập hợp con”.
- Học sinh thường sai lầm khi làm dạng bài tập:
Điền kí hiệu ,, vào chỗ trống: 3 …. N ; {4} …. N ; 1,4 …. N
Nhiều HS có thể điền sai là: {4} N
- Nguyên nhân sai lầm:
Do học sinh chưa hiểu rõ quan hệ giữa phần tử với tập hợp và tập hợp với
tập hợp, chưa xác định được đâu là phần tử, đâu là tập hợp. Để dùng kí hiệu cho
đúng của dạng bài tập này.
- Biện pháp khắc phục:
Ở đây giáo viên chỉ cần chỉ cho học sinh quan hệ giữa phần tử với tập hợp
chỉ dùng kí hiệu ,; còn quan hệ giữa tập hợp với tập hợp là dùng kí hiệu
và
chỉ cho học sinh thấy các phần tử nằm trong hai dấu ngoặc nhọn là một tập hợp.
2/ Trong bài: “Phép cộng và phép nhân”
- Sai lầm có thể xảy ra khi học sinh áp dụng tính chất phân phối của phép
nhân đối với phép cộng:
Khi HS làm dạng bài tập 3.(4+5)
5
Đề tài sáng kiến kinh nghiệm
Năm học 2015-2016
HS thường thực hiện 3.(4+5) = 3 .4 =12
= 3 . 5 = 15
= 12 + 15 = 27
- Nguyên nhân và biện pháp khắc phục:
Do học sinh chưa nắm vững tính chất, không thể hiểu được 3.(4+5) không
thể bằng (3.4) mà học sinh chỉ lấy số 3 nhân với từng số hạng của tổng, rồi công
các kết quả lại. Ở đây giáo viên chỉ cần đưa tình huống như ví dụ cho học sinh
so sánh 3.(4+5) với tích 3.4. Rối từ đó xác định 3.(4+5) không thể bằng với (3.4)
và khẳng định cách làm trên là sai và cách làm đúng sẽ là:
3.(4+5) = 3.4+3.5 = 12 + 15 = 27
3/ Trong bài: “Phép trừ và phép chia”
- Học sinh thường mắc sai lầm khi giải bài tập tìm x sau:
3x – 24 : 12 = 11
3x – 24 = 11 . 12
3x – 24 = 132
3x = 132 + 24
x = 156 : 3
x = 52
- Nguyên nhân sai lầm:
Do học sinh xác định số 12 trong biểu thức là số chia và xem (3x -24) là số
bị chia nên dẫn đến sai lầm.
- Biện pháp khắc phục:
Ở đây giáo viên nên đưa ra hai đề bài:
3x – 24 : 12 = 11 và (3x – 24) : 12 = 11
Yêu cầu học sinh nêu sự khác nhau của hai đề bài .
GV đưa ra cách giải đúng cho các bài tập trên để HS so sánh.
6
Đề tài sáng kiến kinh nghiệm
Năm học 2015-2016
(3x – 24) : 12 = 11
3x – 24 : 12 = 11
3x – 2 = 13
3x = 13 + 2
x = 15 : 3
x = 5
3x – 24 = 11 . 12
3x – 24 = 132
3x = 132 + 24
x = 156 : 3
x = 52
Từ đó đi đến nhấn mạnh sự khác nhau giữa hai đề bài, giữa hai kết quả
và kết hợp chỉ ra cho học sinh thấy sai lầm trên để học sinh rút kinh nghiệm.
4/ Trong bài: “Luỹ thừa với số mũ tự nhiên,nhân hai luỹ thừa cùng cơ
số”
- HS thường sai lầm khi tính luỹ thừa:
Nhiều HS có thể tính 43 = 4.3 = 12
- Nguyên nhân :
Do học sinh chưa hiểu kĩ định nghĩa về luỹ thừa và làm theo cảm nhận nên
đa số HS dễ mắc sai lầm này.
- Biện pháp khắc phục:
Giáo viên đưa ra hai cách làm sau:
Cách 1: 43 = 4.4.4 = 64
Cách 2: 43 = 4 . 3 = 12
Yêu cầu HS xác định cách làm đúng, cách làm sai ? Tại sao?
Từ đó GV nhắc HS không nên tính 43 bằng cách lấy cơ số nhân với số mũ.
5/ Trong bài: “Thứ tự thực hiện các phép tính”
- Sai lầm HS thường mắc phải là:
Trường hợp 1: HS tính: 2 . 42 = 82
Trường hợp 2: HS tính: 62 : 4 . 3 = 62 : 12
7
Đề tài sáng kiến kinh nghiệm
Năm học 2015-2016
- Nguyên nhân:
Do HS chưa nắm kĩ quy ước về thứ tự thực hiện các phép tính. Nên cứ
thấy thuận lợi là thực hiện.
- Biện pháp khắc phục:
Ở đây giáo viên nên đưa ra hai cách làm sau cho mỗi trường hợp:
Trường hợp 1: Cách 1:
Cách 2:
2 . 42 = 82 = 64
2 . 42 = 2 . 16 = 32
Trường hợp 2: Cách 1:
Cách 2:
62 : 4 . 3 = 62 : 12 = 36 : 12 = 3
62 : 4 . 3 = 36 : 4 . 3 = 9 . 3 = 27
Yêu cầu HS xác định:
Cách nào làm đúng, cách nào làm sai ? Vì sao đúng, vì sao sai ? (cho
mỗi trường hợp)
Rồi từ đó giáo viên chỉ cho HS thấy chỗ sai là không thực hiện đúng
theo thứ tự thực hiện các phép tính. Để HS rút kinh nghiệm.
6/ Trong bài: “Số nguyên tố, hợp số, bảng số nguyên tố”
- Dạng bài tập HS dễ sai lầm là:
Xét xem hiệu 13.7.9.11-2.3.4.7 là số nguyên tố hay hợp số ?
HS sẽ xác định hiệu chia hết cho 7 và đi đến kết luận hiệu là hợp số.
- Nguyên nhân sai lầm:
HS chứng minh hiệu chia hết cho 7 nhưng không biết rằng hiệu đó có bằng
7 hay không nên dẫn đến sai lầm là thiếu một điều kiện là hiệu phải lớn hơn 7.
- Biện pháp khắc phục:
Để khắc phục được trường hợp này giáo viên đưa ra một bài tập sau:
Xét xem hiệu 2 . 6 . 5 – 29 . 2 là số nguyên tố hay hợp số ?
Khi HS xác định được hiệu chia hết cho 2, giáo viên yêu cầu HS thử tính
xem hiệu trên bằng bao nhiêu ?
8
Đề tài sáng kiến kinh nghiệm
Rồi từ đó đi đến kết luận hiệu chia hết cho 2 nhưng hiệu đó bằng 2 nên
hiệu là số nguyên tố.
Năm học 2015-2016
Từ đó giáo viên cho HS rút kinh nghiệm sai lầm như bài tập trên.
7/ Trong bài: “Phân tích một số ra thừa số nguyên tố”
- HS dễ mắc sai lầm khi phân tích một số ra thừa số nguyên tố .
Nhiều HS thực hiện khi phân tích số 120 ra thừa số nguyên tố:
120 = 2 . 3 . 4 . 5
- Nguyên nhân sai lầm:
Do HS chưa hiểu được định nghĩa thế nào là phân tích một số ra thừa số
nguyên tố, nên không thể xác định tích (2 .3 .4.5) trong đó có một thừa số là hợp
số.
- Biện pháp khắc phục:
Ở đây giáo viên chỉ cần đưa ra hai cách làm khi phân tích số 120 ra TSNT
Cách 1: 120 = 2.3.4.5
Cách 2: 120 = 2.2.2.3.5.
Yêu cầu HS xác định :
Xét các tích trên xem có còn thừa số nào là hợp số không ?
Cách nào làm đúng ? Vì sao đúng?
Cách nào làm sai ? Vì sao sai ?
Từ đó GV chỉ ra nguyên nhân của cách làm sai. Để HS rút kinh nghiệm.
8/ Trong bài: “Quy tắc dấu ngoặc”
Quy tắc dấu ngoặc không khó đối với HS nhưng khi làm bài HS rất hay bị
nhầm lẫn. Đặc biệt trong trường hợp khi có dấu trừ đứng trước dấu ngoặc.
- HS thường mắc sai lầm khi làm dạng bài tập:
Bỏ dấu ngoặc rồi tính : (27+65)-(84 +27 + 65)
9
Đề tài sáng kiến kinh nghiệm
HS sẽ thực hiện (27+65)-( 84 + 27 + 65)
Năm học 2015-2016
= 27 + 65 + 84 - 27 - 65
= (27 – 27) + (65 – 65) + 84
= 84
- Nguyên nhân sai lầm:
HS không xác định được dấu của phép tính và dấu của các số hạng, rất
lúng túng khi đổi dấu số hạng đầu tiên nằm trong dấu ngoặc (trong trường hợp
dấu trừ đằng trước dấu ngoặc)
- Biện pháp khắc phục:
Giáo viên chỉ cần coi trọng việc rèn luyện cho HS tính cẩn thận khi thực
hiện “ bỏ dấu ngoặc” hoặc “đặt dấu ngoặc” khi đằng trước có dấu “-”
Chỉ cho HS biết được đâu là dấu của phép tính và đâu là dấu của số
hạng hoặc có thể đưa ra tình huống tổng quát sau:
Thực hiện bỏ dấu ngoặc: - (a - b + c - d)
Cách 1:
Cách 2:
- (a - b + c - d) = - a +b - c + d
- (a - b + c - d) = a +b - c + d
Yêu cầu HS xác định dấu của các số hạng trong ngoặc
Hỏi cách làm nào đúng,cách làm nào sai ? vì sao ?
Từ đó giáo viên cho HS rút kinh nghiệm khi thực hiện quy tắc dấu ngoặc.
9/ Trong bài: “Bội và ước của một số nguyên”
- HS thường sai lầm khi tìm tất cả các ước của một số nguyên như:
Khi tìm tất cả các ước của 6.
Nhiều HS thực hiện: ước của 6 là 1; 2; 3; 6
- Nguyên nhân sai lầm:
10
Đề tài sáng kiến kinh nghiệm
Năm học 2015-2016
Do HS có thói quen tìm các ước của một số tự nhiên, nên khi tìm các ước
của một số nguyên, HS thường quên đi các ước là các số âm.
- Biện pháp khắc phục:
Trong bài học này giáo viên đưa ra hai cách làm tìm tất cả các ước của 6.
Cách 1: ước của 6 là 1; 2; 3; 6
Cách 2: ước của 6 là 1;-1; 2; -2; 3; -3; 6; -6
Yêu cầu HS xác định kĩ yêu cầu đề bài.
Trong các cách làm trên cách nào làm đúng, cách nào làm sai ? Tại sao
Từ đó rút ra kinh nghiệm cho loại bài tập này.
10/ Trong bài: “Rút gọn phân số”
- HS dễ mắc sai lầm sau:
4
9
4 : 2
9 : 3
2
3
Khi rút gọn phân số
- Nguyên nhân sai lầm:
Do HS chưa nắm vững tính chất cơ bản của phân số và chỉ thấy rất thuận
tiện khi đem 4: 2 và 9: 3 nên dẫn đến sai lầm.
- Biện pháp khắc phục:
4
9
4 : 2
9 : 3
2
3
Giáo viên đưa ra tình huống
Yêu cầu HS xác định cách làm này đúng hay sai, nếu sai vì sao sai và sửa
lại cho đúng ?
Từ đó giáo viên cho HS rút kinh nghiệm không nên chia cả tử và mẫu của
phân số như cách làm trên.
Trong bài học này HS còn dễ mắc sai lầm khi rút gọn một biểu thức
8.5 8.2 8.5 8.2 5 8
3
16
8.2
1
- Nguyên nhân:
11
Tải về để xem bản đầy đủ
Bạn đang xem 11 trang mẫu của tài liệu "SKKN Những sai lầm thường gặp của học sinh khi gặp môn Toán 6 và biện pháp khắc phục", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
skkn_nhung_sai_lam_thuong_gap_cua_hoc_sinh_khi_gap_mon_toan.doc